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RESOLUTION IV FRACTIONAL FACTORIAL DESIGNS

FOR THE GENERAL ASYMMETRIC FACTORIAL

Donald A. Anderson
• and

Ann M. Thomas

• ABSTRACT

Resolution [V fractional factorial designs permit estimates

4 of all main effects in the presence of two factor interactions

which may not be estimable . A lover bound on the number of runs
4 k n. n1 n~

required for a resolution IV design In the 
i~l 

S
i
’ x S

1 
x s

2

x.. • x ~k factorial is

N > 
~~~~~~~~~~~~~

I where > 
~~~~ 

8k—2 ’ ... , s1. No series of designs are known

I which meet this bound except for the 2r~ series and the trivial

case where there are two factors. In this paper a method of

- • 
construction is given which yields resolution IV designs near

the theoretical (perhaps unattainable) lower bound . For the

x 3n factorial, the designs exceed the lower bound by six

4
~ 

if n > 3, by four if n = 2, and by three if n = 1. More

generally for thç s~ x s~ , s1 
< s2, the designs exceed the lower

bound by s
2(s2

—l) if n > 3, by s~—3s2
+2s1 if n 

= 2, and by

s
2
(s1—l) if n 

= 1. In general the designs never exceed the

lower bound by Sk(Sk~
l).

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •- -~~~~~ ~~~ ••~~
-
~~~~~~~~~

•
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• 1. Introduction

• Box and Hunter (1961) introduced the concept of resolution of a

design as one way to classify fractional factorial designs. A design

is of resolution 2r + 1 if all effects involving r or fewer factors

are estimable when all effects involving r + 1 or more factors are

zero. A design is of resolution 2r if all effects involving r — 1 or

fewer factors are estimable when all effects involving r + 1 or more

factors are zero. Thus designs of odd resolution permit estimation of

all effects not assumed to be zero, while designs of even resolution

permit estimation of certain effects in the presence of other non—zero,

nonestimable effects. In practice designs of resolutions III, IV, and
- 

V are perhaps of the most interest. A resolution III design allows

sJ estimation of main effects when two—factor and higher order interactions

are negligible, and a resolution V design allows estimation of main

effects and two—factor interactions when three—factor and higher order

interactions are negligible. A resolution IV design, on the other

hand , permits estimation of main effects In the presence of nonestimable

two—factor interactions when three—factor and higher order interactions

• are negligible.

4
~ 

The general asymmetric, or mixed , factorial experiment involves
k

• • n — n1 factors, n1 of which appear at s~ levels, i 1, .. ., k.

Usual notation for th: 

:;t:1:

2
::: ::nk

i—l

where < 
~2 

< < 5
k 

(When there are only two different numbers

of levels we will write s~ x s~.) Statistical literature provides very
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few incomplete resolution IV designs for asymmetric experiments. Most

• of the work done in this area has been directed toward the x

series. Margolin (l969a) established that for n > 0, m > C), the minimum

• 
run requirement for 2’~ x 3n designs of resolution IV is

N > 3(m + 2n—1 )

When n 1, this bound becomes • 
-

N > 3(m+l)

• 
and Anderson and Srivastava (1969, 1972) have construc ted a series of

resolution IV designs for the 2m x 3~ experiment which require only
k

( 4(m + 1) runs. In general, for resolution IV designs for the II
i—i

experiment the minimum run requirement is given by Margolin (1969a) as

N > ~ (s
1 

— l)n
i 

— — 2)]
1=1

but no series of designs is known to attain this bound.

[ In the following a treatment combination will be denoted as an

n x 1 vector t .  The ith coordinate of t will denote the level of the

[‘ j ith factor, and these levels will be denoted by the symbols 0, 1, 2,

... , a~—l~ I = 1, 2, ... , n. A design in N runs is simply a collection

of N such treatment combinations and will be denoted as an n x N matrix

T 
~~l’ 
!2’ •

~~~~~
‘

• 2. The Method of Collapsing Levels

One procedure of replacing a factor at levels by another factor

at levels, where < 
~2’ is known as collapsing levels of the factor.

The method of collapsing levels as a means of design construc t ion was

— 
~~~~~~~~~~~~~~~ - ‘  •- •~~~~~~ - 

- .
~~~~~ -, t .~~~~~-



-,
~~~ •• -“ ---~~~~~

-- --• • • • • 
_ _ _

~~~~~~~~~~~~
• ,
~~~~~~~ - • - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

____~c ••____~~~

4.

~ I
3

• introduced in a concise mathematical form by Kishen and Srivastava

(1959) , and also by Addelman (1962) in a paper that developed main

• effect plans for asymmetric factorial experiments. The technique has

been applied frequently, primarily in the construction of orthogonal

designs of resolution III and resolution V. However, Margolin (l969b)
nrfn• used 3 designs of resolution IV as base plans from which to derive

m nnew designs for the 2 x 3 experiment.

j Let the levels of a factor appearing at s levels be labelled as

0, 1, ..., s—l. When considering the collapsing of levels, it is

convenient to define the main effects for each factor in terms of the

Helmert orthogonal polynomials. Suppose now tha t a factor F at

- levels is collapsed to a factor F~ at levels, 
~l 

< 
~2’ by means of

- 
a mapping as shown in (1).

For levels 0, 1 . . . ,  s1 
— 1: level 2. -‘- level £ (1)

For levels Li ~~~~
‘ 

£~ s + 1, . . .,  2.s2—s1 
= 

~2 
— 1:

level -
~ level q1, where each q

1 
is one arbitrarily

selected level from to, i, • . . ,  s 1 
— 11

Theorem 1. If the s
~ 
levels of Factor FC are obtained from the 

~2

~~~~ levels of Factor F by a collapsing scheme of type (1), each main effect

for can be expresse~1 as a linear combination of ~.i and the main

effects for Factor F.

Proof. Since main effects are defined in terms of the Heimert orthogo—

nal polynomials, the proof can be constructed using the columns of the

Helniert polynomial system partitioned as shown in (2). The individual

* 

columns in (2) are labelled by a0 — 1 for the mean , 
~l 

for linear

‘-4
t

~~~ 4~~’~~ ~~~~W 1 i ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~
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• Effect
• Level a a a . . .a a • .

—O —l —2 —s~
—l 

~~~~~ 
—52—1

0 1 1 1 .  . . 1 1 . . . 1
1 1 — 1 1 1 1 1
2 1 0—2 1 1 1

J 

- . . . 0

s1—l 1 0 0 . . _ (sl—1) 1 . . . 1
______________________ _________________ 

(2)

2. s 1 0 0 . . . 0 —s1. . . 1
1 1  . 0

9. = s — i j  0 0 . . . 0 0 • . — ( 8 2— 1)
s2—s1 2

effects, a2 for quadratic effects, . . . ,  a , • . . ,  a . Under a
— — si—l

collapsing scheme of type (1) the partitioned system (2) becomes

- c C c c c CLevel a a a . . . a a . . . a—O —i —2 —si—i 
~~1

- 0 1  1 1 . . .  1 1 . . .  1
I l 1 —l 1 1 1 1

2 1  0 — 2
0 . . *

si—i i 0 0 . . — (si— i) i . . . i (3)
q1 1 a1(q1) a2 (q1) . .a5_ 1 (q1) 1 . . . 1.

‘
~
s2~s1 .

~~ al(c
~
_)
~~~ ~~ %2—s~ 

a51_1(~ 5~ .5~

with columns ag, a~~, ..., aC 
. In (3) for k = 1, . . .,  s1 

— 1 and— — .

- 

j 
~~~~~~~ 

s~ — 
~l’ 

each a~(q1
) is determined by (2) as 0, 1, or —k

in accordance with the particular choice of collapsing scheme. Since

- all main effects are defined in terms of Helmert polynomials, it

• suffices to show tha t each of the first columns of (3) can be ex—

- pressed as a linear combination of the columns of (2), i.e., as a

linear combination of a0, a1, ...,  a$l • Now for k — s~, ~~ 
— 1

Is 

- 
~~~ ~~~~~~~ 

• -• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~
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in (2), ak 
— E~ I — 5k I 0]’, where 1 is a (k — 1)—component vector of

• all ones and 0 is an [(s 2 — 1) — k]—component vector of all zeros.

Thus ak — — [2 I — 5k — 1 I — 1]’, so linear combinations of

a , ..., a can be taken to produce a * , ..., a * l as shown in (4).5 82

Effec t
Level a a a . . . a a* . .— O —i —2 —8i 1 

~~~
4 0 1 1 1  . . . 1 0 . . . 0

1 1 — 1 1 1 0 0
I .J  2 1 0 — 2  1 0 0

3 1 0 0  1 0 0

(4)
si—l 1 0 0 —(s1—i) 0 . . . 0

1 0 0  . . . 0 1 . . • 0
- : : : : : 9 9

I
Then for k — 1, ..., — 1

a~ = ak + a~ (q1)a~ + ... +
• (5)

S —1
= c a

m=0

Since the linear combination of columns specified by (5) determines for

k = 1, ... ,  — 1 the ks-h order effect of F
C as a linear combination

of p and the main effects of F, the proof is complete.

- Theorem 2. Consider an experiment consisting of n factors, and suppose

that the levels of Factor F are collapsed by a scheme of type (1)

to produce the s1 levels of Factor ~C where 
~l 

< 
~2 

If all main

effects are defined in accordance with Helmert polynomials and if

t:4f
F.- J. — -  

~~~~~~~~~~~~~~~~~~~~~ ____
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6

interactions are defined by the product definition, then in the collapsed

design each two—factor interaction involving Ye can be expressed as a

linear combination of effects in the original design.

Proof. As in the proof of Theorem 1, it suffices to consider a system

of Helmert polynomials since a linear combination involving columns of

(2) specifies the needed linear combination of effects. By the proof

of Theorem 1 the linear combination of columns of (2) which defines the

kth order main effect of is

s—i

Li a~ r c a .
m 0

Let G be any other factor appearing at 
~2 

levels. Since interactions

are specified by the product definition, the interaction of the kth

order effect  of with the rth order effect of G is , for any k and r ,

given by
c 52;1

a = a—kr m —mrm=O

where for m = 0, .. .,  

~2 — ~ is the 
~~~ 

— 1) x 1 vector that

determines the interaction of the mth order effect of F with the rth

order effect of G. The proof is complete.

Theorem 3. Let T be a.design with corresponding model

E(Y) X J ~~L-2

such that the elements of are estimable and the elements of 
~2 

are

not estimable. Then if
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L 1~l1= H
1B1 and f3~ = ~2 

[~j

the elements of are also estimable.

• Proof. Let CY be the best linear unbiased estimator for ~~ Then

E IH1CYI =

• = H
1

E [~1]

=

Since H1CY is unbiased for I3~ , the elements of are estimable. The

proof is complete. •

Theorem 4. Let Tc be the design that results if Factor F in base plan

T is collapsed to Factor t. If T is resolution IV with p estimable,

then the resolution of TC is at least iv.

Proof. Theorems 1 and 2 guarantee that the conditions of Theorem 3

are satisfied. Thus if p and the main effects of F are estimable from

runs in T, p and the main effects of are estimable from the runs in

TC, the proof is complete.

The discussion of this section applies directly to the collapsing

of one factor in an s~ base plan. However, repeated application of

Theorems 1—4 guarantees that if T is a resolution IV s’~ design with p

estimable and TC is obtained from T by collapsing any number of fac tors,

then T
C 
is also resolution IV with ~i estimable.

The designs presented in the remaining sections of this paper are

• • • the smallest known resolution IV designs for the asymmetric factorial

experiment. The construction technique throughout is to collapse levels

15 

~
—

~--—~~~~~~ -a . -i~ ~~~~~~~
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of treatment combinations in the s’~ foldover designs given by Anderson

and Thomas (1975). In the 2’~ experiment the foldover of any treatment

combination is produced by a simple interchange of 0 and 1. For the

• experiment we extend the foldover technique by interchanging symbols

J in accordance with the symmetric group on three symbols S3 
= [e , (012),

(021), (01), (02), (12)]. Thus the foldover set generated by any

treatment combination t is S
3
(t) = [t , (0l2)t , (021)t , (Ol) t , (02) t, -

4 (l2)t], where, for example, (0l2)t is the treatment combination

obtained from t by changing 0 to 1, 1 to 2 , and 2 to 0. It is apparent

that the foldover set of any treatment combination in S
3(t) is again

j S
3(t). The foldover set of (O,0,...,0)’ = 0 consists of three treatment) • combinations, (0,0,...,0) ’ , (1,l,...,1)’, and (2 ,2,...,2)’, while the

foldover sets of all other treatment combinations consist of six treat—

I utent combinations. Thus the 3n treatment combinations may be parti-

tioned into one set of size three and (3
n 

— 3)16 sets of size six via

the foldover operation.

There is a natural extension of the foldover technique to the

experiment employing the symmetric group on s symbols. The foldovers

• of any treatment combination t are obtained by making the interchanges

\ 

in symbols indicated by each element of the group, and the foldover

set of the element is the union of all these foldovers. The s~ treat-

ment combinations are thus partitioned into foldover sets as in the 2
T
~

- and 3~ experiments. The foldover set of (0,0,... ,O)’ obviously contains

• s treatment combinations. The foldover set of any treatment combina-

tions with only two distinct elements will have s(s — 1) treatment

combinations. Similarly, the foldover set of a treatment combination

U 

-
~~~~~~~ ~~~~~~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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• with k distinct elements contains s(s — l)(s  — 2).. .(s — k + 1) treatment

combinations , k = 1, 2, ...,  S.

Let denote the treatment combination with ith coordinate one and

zeros elsewhere. The design T consisting of the foldover sets generated

~J by 
~~~
‘ 
~l’ ~2’ 

• •6~ is resolution IV in N = s(s — l)n + s runs. The

design permits estimation of the mean p, and has s degrees of freedom

for estimation of error. The designs given in the remainder of the

4 paper are obtained from this series of resolution IV designs by

• collapsing levels.

Since most of the existing research concerning asymmetric factor—

ials has been directed toward the x 3~
’ experiment, Section 3 is

• 
- devoted exclusively to that case. In Section 4 the notions of Section

2 are extended to generate designs for the s~ x s~ experiment, where

- 81 
< 
~2 

and 
~2 

> 3. Finally, Section 5 introduces the problem of

collapsing levels to produce resolution IV designs for the general

asymmetric experiment.

3. The 2m x Mixed Factorial: Collapsing the 3’~~
” Foldover Design

n*nI For the 3 factorial experiment with m > 1, n > 1, let T =

- 

~~~~~~~ ~~ ~ 
represent a f oldover design of the ser ies presented

4 in Section 2. Thus N 3 + 6(m + n). By collapsing the f i rs t  m

components of each C T one can obtain a design , .say TC , for a mixed

factorial experiment of the type 2~ x 3’~, having m factors at two levels

and n factors at three levels. Since T is a resolution IV design wit-h

• with p estimable for the 2m x 3r~ experiment.

~~~ 
p estimable for the experiment, Tc will be a resolution IV design

U

• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ _ _ _ _ _ _ _ _
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TC can be obtained from T according to a collapsing scheme of the

type specified in (1). Suppose that the levels for each two—level

• factor are denoted by 0 and 1 and those for each three—level factor

, are denoted by 0, 1, and 2. For each t~ = [t11, t~ 2 , ..., t1,  ~~~~~~~

I I C C C C

I ~~~~~~ ~~~~~~~ , I = 1, .. . ,  N, define = [tii, t~ 2 , .. .,  t~~~, ~~~~~~

I ~~~~~~ ~~~~~~~~ where for each j, J = 1, . . . ,  m , t~~ Is obtained from t~1
by a mapping of the form given in (6).

I,

1. level 0 -~ - level 0

2. level 1 -‘- level 1 (6)

3. level 2 -
~~ level q, q = 0 or 1, selected arbitrarily.

N
• 

- 
Then TC lj tc .

i—l
_i

The collapsing process , of course , yields some duplication of

treatment combinations for the 2m x 3~ experiment , so that NC , the

number of distinct runs in TC, is not equal to N , the number of runs

in nin T. Margolin s (l969a) bound for the 2 x 3 fractional factorial

experiment is N > 3(m + 2n) — 3. In order to compare the number of

treatment combinations in TC with this lower bound , it is convenient

f ir st to par tition T into the three subsets T0, T1, and T2, which are

displayed as rows of (ii + m)—component treatment combinations in

0 (1,0) 0 (2 ,0) 0 
-

T 
- r-m m mxn m mxn

0 0 0 (1,0) 0 (2,0)
-• —n nxm n nxm n

J (0 ,1) J (2 ,1) J
• T1 

51 in mxn in mxn (7)
J J (0 ,1) J (2 ,1)—n nxm n nxin 

— 
n

• 2J (0 ,2) 2J (1,2) 2J 
—

T in mxn in tnxn
2 2J 2J (0 ,2) 2J (1,2)

~~~~~ 

- - —n nxm n nxm n

- 

~~~~~~~~~~~ ~~~~~~~~~~~~~ ~ 
—
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where (a,b)k denotes a k x k matrix having a
’s on the diagonal and b’s

off the diagonal, 0~~9. 
denotes a k x £ matrix of all zeros, denotes

a k x 1 vector of all ones, and denotes a k x 9. matrix of all ones.

• ~,I Consider first the case for which m > 1 and n > 2.

Theorem 5. With m > 1 and n > 2 , if TC is obtained from T by a collap—

sing scheme of the type specified in (6), then NC, the number of treat—

ment combination~ in TC , equals 3(m + 2n) + 3, which exceeds the lower

- • bound by six .

Proof. Let N’ represent the number of runs in T
C and N the number of

• runs in T. From array (7) collapsing T
0 

-7- T~ , T1 
-

~~ T~ , and T2 -‘

) according to a scheme of the type given in (6) produces duplication of

runs in TC as follows .

1. Since 2 -‘ q and q = 0 or 1, the collapsing (2, 
~~~ ~ 

(q, 
~~m’

j  = 0 , 1, produces in duplicate treatment combinations in each of T~ and

CTl.

2. SInce t2
~~ 

I 23n]’ in T2 collapses to [qJ~ I 2J]’ in T~ , where

q = 0 or 1, either

• ) [
~O~2)~

] 
or [(i,2)

~
]1• — 

man man

• collapses to produce m duplicates in T~. Thus NC = N — 3m 3 + 6(m + n)

— 3m — 3(in + 2n) + 3, which exceeds the lower bound of 3(m + 2n) — 3 by

6. The proof i~ cr~np1ete .

Example 1. In the format specified by (7) the 38 foldover design , which

is to be collapsed to a 2~ x 33 mixed factorial design , appears as —

~~~ ~~~~~~~~~~~~~~~~~~~~~~ • . ~~~~~~~~~~~~
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25 (1)0)
5 

05x3 (2~0)
5 05x3 

—

~3 °3x5 
(1)0)

3 °3x5 (2~0)
3

J5 (0 ,1) 5 ~5x3 (2 ) 1)5 ~5x3

~3 
‘
~H3x5 

(0)1)
3 ~3x5 

(2 )1)3
2J 5 (0~ 2)~ 23Sx3 (l~ 2)~ 235x3
2J 3 2

~ 3~ 5 (0 ,2) 3 2
~3x5 (1,2) 3

• j If q of scheme (6) is selected as 0, the collapsed design is

0
5 

(l~0)~ °5x3 (o,o); 
~~~ 
°5x3 

—

23 °3x5 
(1)0)

3 °3x5 (2)0)
3

J5 
(0,1)

5 ~5x3 r(o ,i); 
~ 

—

~3 
33x5 (0~l)3 *3x5 

(2 ,l)~
- 

~5 : 
(0~0)

5
I 
°5x3 (I ,~)~ 

— 

2
~Sx3

2J3 1 2.33 5  I 
(0 ) 2)

3 233 5  (1) 2) 3

) with duplicate treatment combinations indicated by dotted line enclosures.

Thus the design for the 2~ x 33 experiment consists of NC = 36 treatment

combinations.

In the special cases for which n = 1 or n = 2 collapsing scheme (6)

produces some duplication in TC in addition to that provided by Theorem

5. The results for these cases are summarized in Theorem 6.

-T ~ Theorem 6. Suppose Tis a 3~~~ foldover design and TC is a x

4 design obtained from T by a collapsing scheme of type (6). Let NC denote

the number of treatment combinations in TC.

• 1. If n = 1, N C 
= 3(m + 2), which exceeds the lower bound for

x 3 factorial designs by 3.

C2. If n = 2 , N 3m + 14, which exceeds the lover bound for

x 32 factorial designs by 4.

Proof. 1: If a — 1, array (7) becomes

- 

~~~~~~~~~ ~~~~~~~ 

- 
-
~~~~~ 

- - -  

~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~-. ~~~~~~~~~~~~~~~ 

-
~~~~~ 

___________________
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2~ 
(1,0) Q

~ 
(2 ,0) 9~0 0 . . . 0  1 0 . . . 0 2

T (0 ,1) j  (2 ,1) JT1 = -in in —in in -in

1 1 ... l 0 l . . . l 2
23 (0 ,2) 2J (1,2) 2J

J 

T2 —III m —in Ut —In
— - 2 2 ... 2 0 2 . . . 2 1

which collapses to

— 

C 0 (1,0) 0 (q, 0) 0T1., Ut -ifl in —in
V 0 0 . . . 0 1 0 . . . 0 2

c .1 (0 ,1) 3 (q, l) .3T = —m in —in m —In
1 l ... l 0 l .. .l 2

T~ ~~~ 
(0 ,q)~ q3~ (l ,q) ~~~

— - _ 2 2 ... 2 0 2 . . . 2 2 _

As in Theorem 5, each of T~ and T~ includes exactly in duplicate treat-

ment combinations. However, since n = 1 and every treatment combination

of the form [qJ~ I r] ’ , where r = 0 or 2 , appears in T~ or T~ , all but in

of the treatment combinations in T~ are duplicates. Thus, if n = 1, N
c

= 3(m + 2), which exceeds the theoretical lower bound by only three runs.

2: A similar argument ‘holds when n = 2 in which case

- -j 
~0 (1,0) 0 0 (2 ,0) 0 0~-m in -rn -in in -in -in4- - T0 0 0 . . .0 l  0 0... 0 2 0

~~~ 0 0 . . . 0 0  1 O . . . 0 0 2

• J (0 ,1) j  j  (2 ,1) j  j

Tl = 
~ :::~ 

~ ~ Ut 

~ :::~ 
~m —m

23 (0,2) 2J 2J (1,2) 23 2J• -in in -rn -rn m -in -in
• T2 2 2 . . . 2 0  2 2 . . . 2 1 2

- - 2 2 . . . 2 2  0 2 ... 2 2 1_

- 
— -

~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ - • ~~~~~~ ,r~~~~
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collapses to

- — 2m “°~in 
9m 2~ 

(q,O)~ Zn ~
TC 0 0 . . . O l  0 0 ... 0 2 0

• 0
0 0 .. . 0 0  1 0... 0 0 2

- 
i (0,1) 

~~ ~~ 
(q,l)

— 1  l .. .l 0  1 l ... l 2 1

1 l .. . l l  0 l ... 1 1 2

~i (0 ,q) 
~~~ ~~~ 

(l
~q)~ ~~~ ~~~

2 2 ...20 2 2 ... 2 1 2
- -  2 2 ...22 0 2 ... 2 2 1

- ) thus producing

~L1
• f o  2 I o r I l  2

H L2 oJ L2 1

as duplicate observations in addition to those guaranteed by Theorem 5.

The proof is comPlete.

Example 2. If the 3 foldover design of Example 1 is collapsed by

7scheme (6) with q chosen as 0 to a 2 x 3 mixed factorial design, the

result is

07 
(1,0)

7 27 I 0~0 7 I

0 0 . . . O l  ‘0 . . . O’2
-
~~~~~

~~~ -

, 37 (0,1) 7 37 ~(0~l)~ ,

1 1
I I

1 1 07 
(0,0)

7 9~ 
1(1,0)

7 I 2~
• 12 2 ... 2 0 ‘2 ... 2 1 2 I

t with duplicate treatment 

‘

combinations indicated by dotted line enclo—

csures. Thus N — 27.

~~
- I 

~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘~~~ — -~~ ~~~~~~~~~~~ ~~~~~
- • ~~~-f:  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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51 a - . . m+n4. The s1 x S
2 

Mixed Factorial: Collapsing the 
~2 Foldover Design

:

‘ l The results of Section 2 extend readily to the problem of

collapsing levels of the treatment combinations in an ~~~~ foldover

design to produce an s~ x s~ mixed factorial design . Suppose specifi-

cally s2 
> 3 , s1 

< s2 and that the levels for each of the f irst  in

factors are labelled 0, 1, ..., s1 - 1 while those for each of the
remaining factors are labelled 0, 1, . . .,  s2 — 1. As in Section 2,

• 

- 

T = [t 1, !2’ . . .~~~ represents the foldover design for the ~~~

experiment , and T
C 

= [t~ , t~ , . . . ,  represents the design for the

s~ x s~ experiment which results from the collapsing process. For

each ~~ : [t.1, ..., t~~ , ~~~~~~ ~~~ 
~~ 

J )  i 1, . . .,  N ,

define t. = [t. , t. , . . .,  t . , t. , • . . ,  t. J where for each j,
—1 11 i2 urn i,m+1 i,m+n

j 1, ...,  m , t~~~ is obtained from t.~ by a mapp ing of the type

specified in (8).

For levels 0, . . . ,  s1 
— 1: level £ + level £ (8)

For levels £ = s , • . .,  = S - 1: level £. -~ level q.,

L 

1 1 s2 s1 2 

where q. is an arbi—

trarily selected

- I member of ~O ,1,.. ,s1-1} .
N

Then T’~ U t~ .- ~~1 .

• ,- - In order to investigate the number of runs resulting from appli-

cation of collapsing scheme (8), it is convenient to arriinge the

treatment combinations of the ~~~ foldover design in s
2 
rows as shown

-
• 

in Table 1.

- •,~~ ,—-•~ I_ _ . -. - -~ ~~~~~ - 
~~~~~~~~~~~~~~~~~~ I - .

~~
- • 

~
, 

~~~~~~~~~~~~~~~~~~~~
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In Table 1 each (a,b) denotes an (in + n )  x (in + n) matrix with a ’s

on the diagonal and b’s off the diagonal , 0 denotes an (m + n)-com-
—Tn+n

ponent vector of all zeros, and .3 denotes an (in + n)-component

J
vector of all ones.

m+n .
The s2 foldover design displayed in Table 1 consists of

N s2 + s2
(s
2 - 

1)(m + n) treatment cominations , thus exceeding the

theoretical lower bound by s2
(s
2 

— 1) runs . For the s~ x s~ factorial

experiment, s1 
< s2, the number of treatment combinations in a resolu-

tion IV design must satisfy

N > s2 [(s 1 — 1)m + ‘
~ 2 

— l)n - 

~~~ 
— 2)] .  (9)

The following theorems provide a comparison of N , the number of runs

j  in T
C
, with the lower bound (9).

Consider first the case in which in > 1 and n > 2.

Theorem 7. If T is a foldover design for the 5
h1~~ nj 

experiment , in > I

n > 2 , and TC 
is obtained from T by any collapsing scheme of type (8),

then N
C 
exceeds the lower bound (9) by s

2
(s2 

- 1) runs .

1’roof. Starting with T as displayed in Table 1, collapse each T1 
T~ ,

- 1, according to any scheme of the type given in (8).

The argument in the proof of Theorem 5 extends easily to guarantee

tha t 
~~~ 

- 
~
‘ ‘ a dup l ica te  t reatment  combinations occur in each T~~.

• 1 , - . - , m . ‘pe r  i f I cal ly,  (10) below shows the number of treat —

ment combina t ions  tha t  can be eliminated from various subsets of TC ,

• partitioned in accordance with the heavy lines of Table 1. 

--‘ - .  -
~~~~~
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0 s1(s2
-s

1
)m

________________________________ 
(10)

(5
2-s1

)m ((s2
_s

1
)(s

2
_s

1
_1)m

m+n -Since the number of runs in the foldover design is

N S
2 

+ 

~~~~~ 
- 1)(m + ~~~~

= + s2
(s
2 

— 1)m -+ 
~~~~ 

— 1)n

= s2 + 

~~~~~~ 
— s1) + (s

1 
— 1)]m + 82 (s 2 

— 1)n ,

it follows that

NC 

~2 
+ s2

(s
2 

- s1
)m + s2

(s
1 

- 1)m + s2
(s
2 

- 1)n - s
2
(s
2 

- s1)m

s2[1 + (s1 — 1)m + (s2 
— 1)n].

Thus NC exceeds the theoretical lower bound given in (9) by 
-

- 1) runs. The proof is complete. 

. . .Example 3. Let T be a S , n > 2, foldover design which is to be

collapsed to a 2
m 
x 5n mixed factorial design, denoted by T

C
. Under

the collapsing scheme of type (8) that maps level 2 -~ level 0, level
C .  -3 -7- level 1, and level 4 + level 1, T is as shown in (11) with

duplicate treatment combinations indicated by dotted line enclosures.

Tj -‘

-4-
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‘ 
— -

~~~~ ‘- — - — I  - - - ,  

(4 .11
0 (1,0)m 0 ‘(0,0)’ 0 t (1,0)’ 0 ‘ (1,0) : o—m mxn in mxn m mxn m rnxn

0 0 (1,0) i ‘(2 ,0) 0 ~(3 ,o) u 0 1(4 0)—n nxm n nxm fl ~~~~~~~ n 
— 

n x iii ‘ n
.3 (0 ,1) J (0 ,1) ’ j  (1,1) (i 1) j
—In in mxn ‘ In mxn m lnxn ‘ TT~ mxn

J 

j  J (0,1) ‘ .3 k 2 ,1) j  (3 ,1) J (4 ,1)
I I

nxm n nxm n n xin I n nxin 
- 

n

0 ‘ (0 ,0)  0 ( 1 ,0) 0 ( 1,0)  l ‘ ( 1 ,0)
—in m~ mxn m mxn m mxn m mxn

2J 2J ~0 ,2) 2J (1 ,2)  1 2J 1(3 ,2) ‘ 2J
—fl 

, 
nxm n nxm n nxni a 

- 
nxrn I f l

______ — — —  — I I Ij  (0,1) J (1 ,1) - J (0,1) .3 (1 ,1) ~J—in in mxn m mxn I Tfl inxn I m mxn

- ) ~j  0 ,3 ~j  ki ,~ ~~j  ‘(2 ,3) ‘

nXm nxm 
• n I nxln ‘ n 

- 
nxm , n

J (0,1) J (1,1) ! J ‘ (0,1) J ‘ (1 ,1) • j
—m m mxn m mxn m, mxn , in mxn

~4J 4J (0,4) ‘4.3 (1 ,4) ‘4.3 ‘(2,4) 4J (3 ,4)
L nxm n , 

- 
nxm , n nxin ’ n ~_ n~m_ n

In this case NC = 5(1 + m + 4n), which exceeds the lower bound

5(-3 + m + 4n) by exactly 20 runs.

The cases for which n 1 and n = 2 are considered in Theorem 8.

m+n . C .Theorem 8. Suppose T is an 
~2 

foldover design and T is an

x s~ design obtained from T by a collapsing scheme of type (8).

1. If n = 1, N
C 

s2
[(s

1 — 1)m + which exceeds the lower

• bound by s2
(s

1 
- 1) runs.

\ 

2. If a 2, N
C = 

~~~~ 
+ (s1 — 1)m + 2s

2] + 2s1, which exceeds

the lower bound by s~ — 3s
2 

+ 2s1 runs.

Proof. If a = 1 and T is collapsed according to a scheme of type
(8) , each T~ , j = 0 , . ..,  s1 

— 1, includes exactly 
~~ 

— s
1
)m

duplicate treatment combinations. However , every treatment combination

of the form [q~~ r]~ q = sp 
~~~~~ ~2 

- 1, necessarily collapses to a

- - treatment combination that appears in T~ for some j, ~ = 0,1 ,...

~~~~~~~~~~~~~ - 
• 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~
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Thus for j s~ , .. .,  S
2 

- 1, each T~ includes a total of (s2 
- s1)m

+ 

~2 
duplicate treatment combinations. Therefore, if a 1,

NC 52h1 
+ (s1 

— 1)m + (s
2 

— 1) ]  — s
2
(s
2 

— s1
)

s [(s — 1)m + (s — 1) + (1 — s + s )],

J 

which exceeds the lower bound (9) by s2
(s1 - i ) .

2: A similar argument holds when n 2 in which case each

= 
~~~~

‘ 
. .,  s2 - 1 , includes a total of — s1

)m + 2 duplicate

treatment combinations. Thea NC = s
211 

+ — 1)m + 2(s2 
- 1]

- 2(s2 
- s1

), which exceeds the lower bound by - 

~~2 
+ 2s

1
.

~l ~2 
n~ . .4. Th e S

1 
x 

~2 
x ... x Mixed Factorial Lxper ment

If a foldover design , T, for the s~~ 
~ exr~ riment is to be

collapsed to produce a design , T
C , for the s~~ x ~~~ x ... x mixed

factorial experiment , the problem of determining NC becomes more

complex. It is therefore instructive to consider first an s~
1
~~2~~3

foldover design , which is to be collapsed to an s~~ x ~T 12 x s~
3 mixed

factorial design in which 
~1 

< < s3. If T = [t 1, - . . ,

represents the s~ foldover design , then N = 5
3 + s

3
(s
3 

- 1)(n
1
+n2

+n
3
).

For each t. [t. , ..., t. , . . .,  t. , .. . ,  t .  ] ‘ ,
— —i ii in1 i,n1-f-n2 i ,n1+n2+n3

i = 1, - . .,  N, define t~ ft~1, ... ,  t’? ÷ , ~~~~~~~~~~ .. .,

t
i n i+n2+n3

) where t~~ is determined from t.. according to a

collapsing scheme as specified in (4.12). -
•

Case l:

For levels 0, - . .,  s
~ 

- 1: level £ -+ level £

_______________________
I -
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For levels £ = s , • . . ,  £ s - 1, .. .,  £
1 1 S2 S1 2 s3—s~

= - 1: level £~ 
-

~ level q
~
, where q. is an arbitrarily

selected member of {o , 1, . . ,  —

Case 2: j n  + 1 , ..., n + n
1 1 2

• - For levels 0, ...,  s2 
- 1: level £ + level £

For levels £ = s , • . .,  £ s - 1: level £. +
s2—s 1+1 2 - s3—s 1 3

level q~, where q~ 
is an arbitrarily selected member of

4 
:~ J

Co , 1, . . - , s2 — i}.
N

C CThen T = U t , .
- —1

r As in preceding sections, it is convenient to arrange the treat-

ment combinations of the s~ foldover design as shown in Table 2. Each

(a, b) of Table 2 represents an (n1 + n2 
4- n3

) x (a1 + n
2 

+ n
3

)

matrix with a’s on the diagonal and b’s off the diagonal , which can be

partitioned as shown in (13).

(a,b) bJ bJ 
-

n1xn2 n~xfl3

(a,b) = 
bJn2xni (a,b)n2 bJ

~~~~ 
(13)

bJ bJ (a,b)nn3xn 1 n 3xn 2 3

t Theorem 9, which follows, provides a basis for comparison of N
C
, the

number of runs in T
C
, with the lower bound for asymmetric s~1 x ~~~ x

s~
3 designs, which is given by

N > s
3[(s1 

- 1)n1 + 
~~~ 

- 1)n
2 + (s

3 
- 1)n

3 
- (s

3 
- 2)]. (14)

~~~~~~~ r.~~~~~
.— -- -—— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ 

-
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o ,-i U) (I) U) U) ~i) U) U)

,-1 ‘-I s—I ~—I ‘—I ,-i I-i .-I
— - I I I I I I I I I

c., C’) c’ C’) CV) C’) C’) C’) C’)
(I) U) Cl) (11 (/1 U) U) U) (J~- 

- I -~~ ...) . . .  — — ‘-I ~~~ ~~~ •-• - - .

-4

— ‘ ‘  + I

J 
v-i v-I v-I (N (N C’)
I —~ + I (I) U) Cl)
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fl

I ~~~
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C? v-i U) U) Cl) U) U) U) Cl) 0
a a a a 0 0 0

v-I s-I v-I v-I v-j (N (N (N (N
I I I I I I I I 0
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U) U) U) U) 0) U) U) U) U)

~ 
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Consider first the case in which 1, n2 
> 1, and n3 

> 2.

- * - . . ri1+n2-f-n3 -Theorem 9. If T is a foldover design for the 53 experiment ,

- n1 
> 1, n2 

> 1, and a3 
> 2, and T

C 
is an s~~ x s~

2 x s~
3 mixed

J factorial design obtained from T by any collapsing scheme of type

(12). then N
C exceeds the lower bound (14) by s3

(s3 
- 1) runs.

Proof. Starting with T as shown in Table 2, collapse each T
1 

-
~ T ,

j 0, . . .,  s3 — 1, according to any scheme of the type given in

— 

- (12). Theorem 7 of Section 3, applied twice , guarantees that

duplicate treatment combinations can be eliminated from T
C 

in accord-

- - 
ance with (15), which is partitioned in the same way as Table

- (15)
0 s1(s2-s1

)n
1 ~1(s3-~ 2

)(n
1+n2

)

(s
2
-s1

)n1 
~ 

(s
2-s1

)(s2-s1-1)n1 
(s

2-s1
)(s

3-s2
)(n

1+n2~~

- 

(s3
_s
~ )[

(s
2
_s

i1
1)n

i 
+ a2] f (s3-s2)(s3-s2-1)~~+~~)J

- Thus each T~ , j = 0, - . - ,  53 
- 1, includes ~~(S3 

- s.)n. duplicates,

so a total of s3[(s3 
— s1)n1 + (s3 

- s
2
)n2] runs can be eliminated from

T
C
. Since the number of runs in the 5~1 2 ~~3 foldover design is

N s3 + s3
(s
3 

- 1)(n1 + n2 + a3)

4 - + s
31(s3 

— s1
) + (s

1 
— 1)]n1 + s3[(s3 

— s2) + 

~~ 
— 1)]n

2

+ s3
(.s3 

— 1)n
3
’,

it follows by subtraction that

N
C 

8
3 

+ 

~~~~ 
- 1)n

1 
+ s3(52 

- 1)n
2 ~ S

3
( S

3 
- 1)n 3

= s3[1 + (s~ — 1)n1 
1- (s2 

— 1)n2 
+ (s3 

—

• which exceeds lower bound (14) bys
3
(s
3
-1)runs. The proof is complete. 

- ~~~~~~ 

~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~: - ~
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Example 4. Suppose a n
3 

> 2, foldover design is collapsed

to a x x 5
n3 asymmetric factorial design under the collapsing

scheme (16).

For the n factors at two levels: level 2 -+ level 01

level 3 -I- level I

- level 14 -
~ level 0

(16)

For the n
2 fac tors at three levels : level 3 + level 0

level 4 -+ level 2

TC is shown in (17) with duplicate treatment combinations indicated

by dotted line enclosures. Appropriate dimensions are indica ted by

subscripts in the first column .

H , 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-

- 
- 

~~~~~~~~~~ ,, -
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0 0’~~ 5-- 0 (N 5-- 0 C) (N

I - -  - 
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If n3 
= 1 or n

3 = 2, duplicate treatment combinations in addition

to those guaranteed by Theorem 9 may arise. However, the exact

number of additional duplicates depends on the particular choice of

collapsing scheme (12). Specifically , the amount of duplicat ion is

affected in a rather complex way by how often q~ , j s
2-s1+1 ,

s
3-1, by whether each q~ 

is selected from {0, ...,  s1 
- 1} or from

{s1, ~~~ 

~2 
- i}, and by how often = q1 ’ and q’~ q~

: I for any

pair of levels -~~~ and &I with j / j ’ . However , one simple result

deserves mention . If n
3 

= 1, and a collapsing scheme is selected so

-: that for j s2 
- s1 + 1, . .,  s3 

- 1, 
~ = q)(, where q

1 
q~: is

an arbitrarily selected member of {o , 1, - . .,  s1 
- i}, then T

C includes

an additional (s3 
- s2

)(s3
) duplicate treatment combinations. This

- 

‘- result is illustrated in Example 5.

Example 4.5. Suppose the 5~~~~2
+1 

foldover design is collapsed to a

x 3n2 x 5 asymmetric factorial design by collapsing scheme (18).

For the n1 factors at two levels: level 2 + level 0

level 3 -
~ level. 1 (18)

level 4 + level (1

For the n2 
factors at three levels : level 3 + level 1

4 level 14 + level 0

The resulting design is shown in (19) with d up ] : c 5 1 t e  l r ea ln i ’nt  ( - 0 m b : —

nations indicated by dotted line enclosures. A ppt’opr~ . i I c  d i n I -n?Cio I1 :4

are indicated by subscripts in the first columns

- ~~~~~~~~~~~~~~~~~~~ 
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For k > 3 the problem of collapsing a foldover design for the

- .-fnk experiment to create a design for the s~~ x x. • .x

asymmetric experiment , s~ < s~ <... < S)~~ becomes increasingly compli-

cated . For each = [t~ 1, ..., t. + 
] I , i 1, .., N , define

- 
l,nl ...nk

- t~ = [t~ , . . .,  t~ t. ] ‘ , where t~ . is determined- • —1 ii i ,fl
1

+. . .+flk l  i~~fl
1

+ • .+fl
~<

from t.~ according to a collapsing scheme as specified in (20).

Case 1: j 1, .. . ,  n1 (20)
For levels 0, .. .,  S

1 
- 1: level I + level I

For levels £ s , • ..,  I = s — 1: level I. + q. , where
5 

1 1 Sk sl k ] Ji

q. is an arbitrarily selected member of {o , 1, . ..,  s
~
_1}

-
‘ 

:11
J Casem(form 2, ..., k — 1 ) : 

~ ~~~~~~~~ 
..., nm i + f l

For levels 0, - . •
~~ 

Sm 
- 1: level I -

~ level I

~1. For levels I = s , . .. ,  I s - 1: level I + levelSm
_5
1+l a sk

Si k 3
F 

~~m ’ 
where q1,~ 

is an arbitrarily selected member of

{o , 1, . S
m 

-

If Tc is obtained from T by a collapsing scheme of type (20), the

exact number of duplicate treatment combinations in T
c 
depends on

and on the particular choice of collapsing pattern . However, Theorem

- —
~~~ 10 provides a lower bound for the number of duplicate runs, thus

- 

providing a basis for comparison of NC and the theoretical lower

bound
I I k
1- - 

N sk[~ 
(s. - l)n. - - 2)]. (21)

5 1
p1-I- . - .+nkTheorem 10. If T is a foldover design for the S
k 

experiment

and TC is an x x - . - x mixod factor LII lb’? iI I ~I~i i :n( -d  t i-oti,

T by any collapsing scheme of type (20), then NC excecCis the  lower

• - bound (21) by no more than sk(sk - 1) runs.

r 
-

-1 • ’ I-- --4

- - —~~~~~~
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Proof. Let T , j = 0, • . .,  s3 
— 1, be defined as in Section 3•

Then repeated application of Theorem 7 guarantees that each
k-i

a 
- includes at least ~ (s

3 
— s .)n . duplicates, so a total of

k—i i=i 1 1

S
k ~~~ 

- s
~
)n.] treatment combinations can be eli~-inated from T

c.

- 
~i

-’- -• .+nkSince the number of runs in the S
k foldover design is

. 4  N s
k + s k(sk

..i)(
~~~

n.)

- 
- 

= S
k 

+ 
~~ 
sk[(sk 

— 

~~~ 
+ (s. - 1)]n. + 

~~~~ 
— 1)nk ,

it follows by subtraction that

NC < Sktl + ~~ (s1 
—

which exceeds lower bound (4.21) by s
k
(s
k 

- 1) runs. The proof is

complete

ni+n2+n,,I-2 -Example 6. Suppose a 5 foldover design is collapsed to a

ni n2 n3 2 . • .2 x 3 x 4 x 5 asymmetric factorial design by means of mapping

(22).

level 2 + level 0

level 3 —
~ level 1 (22)

4

~ 

level 4 -
~~ level I

TC is shown in (23) with duplicate treatment combinations indicated

by dotted line enclosures. Appropriate dimensions are ind i cated by

subscripts in the first column.



!‘ 
-

~~ 

- -  

~~~~~

—- -— 
- v -’ s- - -

30

— —0 s-I (N C’) a-
— a a a a a

a- a- ‘-~~~ a- ‘-J a- C!) C’)
• 0 0 0  ‘- ‘) ‘ ) — 0 (N (N — -  ‘~~ ‘) C’) —.- ~~ ‘~~ ‘~D ‘ (N

V — — - - 
~~

— — I — - -~~ I -— — —~ 
—

~ I — — - — - —
0 I s-i (N I C’) a-a a S a . I a
v-I s-I !~)  s-I ~) I 

- s-i ~~ C’) I-)
o o —..’o~ ~~~~a I I C )( N’ .(N ~) S- - C’) I ~‘— a-

I — — I J — — 
I- - -

0 I s-i (N I s-i I s-I
is I a I a I a a

J 
• s-I I s-I s-4 ) ’ ) v-l~~

)
~~ DI i s-i 

~ )
0 s..- 0 0 I i—~ •-:

~ ~-,I 0 —..-- (N (NI ‘-n ’-’ C’ C’) ‘..- -a CI)

I I— I — ‘ -- - I I — I — o
I 0 ‘ s-I 1-0 s-i • s-I 0)

a ~~a I a 
~ I a I a ( 

~~I s-~ s-I ‘ s-I ’ )~~~~~~~)  s--i ~~~~~ ‘ s-i ~) F-
L.~~~P..O_qJ L~~~~~~~~~~RJ i~ . .$N_C’j~~ j L ”~~

- J C ”. C’) ’ ~— r ~— — — — .0
C s-I (N ‘) a-

a a a a a

C’) C’) ‘-) ‘) (‘) (N 0)
0 0 0’ -a 0 ( N( N’ . ., 

~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ CI)— — — C
k C s—I (N C!) v-I.5 a .- I- a

- I  C’) C’) ‘~~~ C ’) ’ )  (N~~~)  (N~~ -J (5
0 0’-’ 0 1) — 0 (N •— (N ‘~) ‘~

) —.-- C’) ‘•) ~ —.-- a-

I 6 
~ ~~~~~~ a C

a a a a a (‘4
v-I I v-I I ~~~~~~~~~ ( NP ) I~~ (N ‘ )

I 0’..- 0 0 , I 
~~ 

-.- ~~ ~~ I C ) -~ ~~ ‘ ) 5 - C’ )  C’)  a- w
I 

— I I 
s
—’ ~~~~~ 

— — T r , ~
,

I o I 
, ~~ IC) 1 v-s g s-i

a a a I a I
I s-~ I Is - i  I Iv - )~~~~~,I IQ  ! S ~~~ I0  

~ 5
• 

- 
I ‘—‘ 0 0 0~ ‘.. - ‘-~ ‘-

~ ~5) 
(N (N (N --a- ~~ C’) C’) ‘.-~ ‘ a- .0

— - i  _
~~ -_ . - .~ _ J  L . _ . _ 1  L _ _ . J  I a

‘-I — — — — —S
0 s—I (N C’) a- C)
a is a a a

~~~ (N (N ) ‘) s-I ‘) sI s-I 0)
0 C C ’ — ~~~~~~~~~~~~~ 0 ( N ( N ’— ‘-) I) C’) S-’ ~~~~I ) 1 ) 5 -  LI~i

— — r- — - — •)._
_ — 0

C s-i (N C!) ( si I ~a a a I 44
(N (N ~~~~~~~~~~~~ s-I~~~~0 C S- 0 ‘) ‘ ) ‘— ‘~~ 0 ( N ’— ( N  ‘D ’ D ’ — C’) ‘-) ‘--) ‘.-.— a- a

— — - ‘  — — I s-I
C s-I (N s-i v-Iis is 5 a I(N (N -l~~~ )~~~ ) s-1~~ ) )  I s-I ~~ .0

0 — . .- 0 0  ‘ 0- .-- ( N ( N  ~) ‘ C’) ’)) ~~)~— ‘~~)a - g

I — — — — —5
0 s--i I 0 s-I v-I s--II a a I a - a I

I ‘ I C I s-i~~)~~~~~ D s-i ‘D~~~ )I Is- I ~) 5-’
-
~~ 

0 0 0
1 ‘

~~ ~~ 
5-’ (N °~ ~~ ‘ ~~~ C’)

1 
‘-‘ ‘- a-

• I — — - _ _ I J__ — — _ _ _ _ l -o• a — — — — — C

7 0 s-I (N a-

\ 

is a a a a
s-i 0 ‘) ‘ )C  ‘ ) C  0 .0

0 0 0 -.-- ‘~~~~ ‘ - ‘ .- 0 C ’-I (N ’..- ~) s- C’) s..~ 
I
~) s--J I

~
) 5 ._

~

— — r- — C)
0 s-I (N C’) s-Ia a a .5 is

s--I 0 ~)0~~ ) 0~~ ) O~~~ —I
0 0 ‘~~~ 0 ‘-

~ ‘- — 0 ( N’.-’ (N ‘) ‘C ‘—‘C ’)  ‘-
~ ‘C ‘-- a-

- - — — — - — — _C
0 s-i (N s I  s-i 44

0 C ’ C ’ C  0 ’C ’- )  0 ‘~) (/)
o 00  ‘C ’ —  ‘C ‘C 0’— (N (N ‘C —s C’) C’) ‘C — - a-— — I -::-

~ — — ~~, — — U
0 s—I J O  , v-I ,-I C)

A a a a a X
s-I 0 0’-~~’C’- I 0 ‘C - ’C  0 ‘C 0)
‘ —0 0 0  -‘ ‘)‘C ’C  

~~~~~~~~~~~~~~ 
‘-a~~~) C ! ) C!) ‘.— ‘-, ‘-, a-

s1 (N C’) s-I (N C’) s-—I (N C’) s-I (N C!) s-I (N C’) a-
f f ~~~~~

I1 ‘Cf~- fI- f$r ~~~~~f~~f~~
l1 f f f ( N  

~~~~~~~~~~ 
CC 

- - - ~~~~~~~~~—- -~~—
-~~~~ __~~~ -.~~~ _--5v’- 

_ _ _ _ _ _



—-- ~-_-~__- ..‘~~~~~ — —~~- ~~~~~~~~~~~~~~~~~~~~~~~~ 
— 

p

SELECTED REFERENCES

Addelman , S. “Orthogonal Main—Effect Plans for Asymmetrical Factorial
Experiments,” Technometrics, 4: 21—46 , 1962.

a Anderson , D. A. and J. N. Srivastava . “Resolution IV Designs of the
2m x 3 Series,” The Journal of the Royal Sta t is t ical  Society

- 
- Series B, 34: 377—384, 1972.

________ and A. H. Thomas. “Resolution IV Foldover Designs for the 5n

Factorial Experiment.” Research Paper 1/69, S—1975— 535, College of
Commerce and Industry , University of Wyoming , 1975.

- 
- 

________ - “Near Minimal Resolution IV Designs for the s~ Factorial.”
Research Paper #81, College of Commerce and Industry, University
of Wyoming , 1975.

Banerjee, K. S. and W • T. Federer . “On a Special Subset Giving an
Irregular Fractional Replicate of a 2n Factorial Experiment ,”
The Journal of the Royal Statistical Society, Series B, 29:
292 — 299 , 1967.

Bose, R. C. “Mathematical Theory of the Symmetrical Factorial Design ,”
• Sankhya, 8: 107—166, 1947.

________- “The Fundamental Theorem of Linear Estimation ,” Proceedings
of the 31st Indian Sci. Congress, 2—3 , 1944.

________ 
and K. Kishen. “On the Problem of Confounding in the General

Symmetrical Factorial Design,” Sankhya, 5: 21—36, 1940.

Box, C. E. P. and J. S. Hunter. “The Fractional Factorial Designs ,
I and II,” Technometrics, 3: 311—351, 449—458, 1961.

— 
and K. B. Wilson. “On the Experimental Attainment of Optimum

Conditions ,” The Journal of the Royal Statistical Society, Series
B , 13: 1—45 , 1951.

• Davies, 0. L, Ed. The Design and A~~j~ysis of Industrial Experiments.
New York: Oliver and Boyd , Hafner , 1956.

Finney, D. J. “The Fractional Replication of Factorial Arrangements,”
Annals of Eugenics, 12: 291—301, 1945.

John, P. W. M. “Three—Quarter Replicates of 2~ Designs,” Biometrics,
18: 172—184, 1962.

— 
~~~~- — 

~~~~~~~~~~~~~~ ~ - ~~ T. ~~~~~~~~~~~~~~~~~~~~~



-- 
~~~~~~~~~ ~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Kishen, K. and J. N. Srivastava. “Mathematical Theory of Confounding
In Asymmetrical and Symmetrical Factorial Designs,” Journal of
the Indian Society of Agricultural Statistics, 11: 73—110, 1959.

Margolin , B. H. “Results on Factorial Designs of Resolution IV for the
2~ and 2n3m Series ,” Technometrics, 11: 43 1—444 , 1969 .

J . “Orthogonal Main—Effect Plans Permitting Estimation of all
Two—Factor Interactions for the 2fl3~ Factorial Series of Designs,”
Technometrics, 11: 747—762, 1969.

Mitchell , T. J. “Computer Construction of ‘D—Optimal’ First—Order
Designs,” Technometrics, 16: 211—220, 1974.

Pearson , E. S. and H. 0. Hartley , Eds. Biometrika Tables for
- . Statisticians, Vol. I. Cambridge University Press, 1966.

Searl es , S. R. Linear Models. New York: John Wiley and Sons, Inc.,
1971. -

Srivastava, J. N. and D. A. Anderson . “Fractional Factorial Designs for
Estimating Main Effects Orthogonal to Two—Factor Interactions :
V’ and 2m x 3n Series.” Aerospace Research Laboratories Technical
Document 69, 1969.

~~~ 

- “Optimal Fractional Factorial Plans for Main Effects Orthogonal
to Two—Factor Interactions : 2m Series ,” Journal of the American
Statistical Association, 65: 828—843, 1970.

Webb , S. R. “Design , Testing and Estimation in Complex Experimentation :
Part I. Expansible and Contractible Factorial Designs and the
Application of Linear Programming to Combinatorial Problems .”
Aerospace Research Laboratories Technical Document, 65—116, 1965.

________- “Non—orthogonal Designs of Even Resolution,” Technometrics,
10: 291—300, 1968.

if ~~~~~~~~~~~~~~~~~~~~~~~~ _r-~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-



~ v-~~~~~~’ -~~~~~~~~~~ -~~~~~~~~~~~~

i - SECURITY CLASSIF ICA T ION OF THIS PAGE (117I.n 0.1. tnh.rød) 
___________________________________

- 
I~~~ A~~~I~~~&I ~~~~~~~~~ READ INSTR UCTIO NS

-
~ i~ rij it I UU~~UM N I A I IUN r~ u~ BEFORE COMPLETING FORM

r REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT S CATALOG NUMBER

Unclassified - -
- 

~~~~~ 4. TITLE (ond SubiSU.J I TYPE OF REPORT S PERIOD COv ERED

- Resolution ~~ Fractional Factorial Designs for / Technical ~eport

- - \ t I e ~~ ,
enera1 Asymmetric Factorial 

~
-- -- -- -————--‘ 

~~ ~~~~ RMINO ORG. REPORT NUM B ER

- 

~~~~~~~~~~~~~~~~ - ~~~~ ~~~~~~4_ 7 s~C..j sls / -
7 Au R S pNT~~AcT OR GR NI NuMBER(a)

J~D na1d A.4n~~~~on 

~~~ 
_ _

- 

1 

~ PERFORMING ORGANIZATION NA~ $..dIsMD ADDRESS 10. p . E r. TASK

J Statistics Department , Box 3332 , Univ . Station
- - University of Wyoming, Laramie WY 82071 N~042—3l0

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORr DATE

Statistics and Probability Program Sep - 

~~76 —

- Office of Naval Research L
__.~ 13. NUM B

Arlington , VA 22217 32
L - 

IS. MONITORING AGENCY NAME & AODRESS(I1 dilf.go.1 ho., ConIrottSnS Oific•) IS. SECURITY CLASS. (of hi. ,3~,oai)
B - 

- - -— -- Unclassified
- 

- (~~~~~~~~2 I 
_ _ _ _ _ _ _ _ _ _ _ _ _“— 7~

__2 7—~-~ I IS.. DECLASSIFICAT ION100WNGRADING
r ’ I SCHEDULE

I -~ __________________________________________________________

- 

J 
I~. DISTRIBUTION STATEMENT (of lAS. R.por l)

- Approved for public release; distribu~~~n~~~1imited.

17. 
_ _ _ _  _ _ _

I S. SUPPLEMENTARY NOTES

1$. KEY WORDS (Conlinu . on r.v.rI. aid. If .,.c.a ..ty .-,d id.n1117 by block n, ,b.i)

4.. Resolution IV , Fractional factorial design , Foldover design

- 
- - 2\ A BSTR A CT (Conllnu. on -.vara. aid. If n.c..a~~y o.d id.nfiSI by block ni.ib.t)

- 
“
~eso1ution IV fractional factorial designs permi t  es t imates  of a l l  main effec-

in the presence of two factor interactions which may not be estimable .—)A lower afound on the number of runs required for a resolution IV design in the L~.~pti~d 1 a~-
- k n fl

1 ~k 
k

- 1~ l Sj X x 
~2 x . .  -x Sk factorial is N > s

kE i..l(si l)n1 
— (sk

_2)l
-

- where Sk ~ 
5k— 1’ 0k— 2 ’ .. - ,  s1. No ser ies of design s are kn own which meet this

DD ~~~~~~ 
1473 EDiTION OF I NOV 51 IS OBSOLEtE

-

- 

S/N 0I02•0I4- 660 1 I 
SECURITY CLASSIFICATION OF THIS PAGE (Who. 0.5. ~nI...d) 4”Cl ~

- -
-

-

-

-

. 
-~~ 

-

~~~~~~~~ 

-

~~~ 

- 

-

_____ — 
-- 

~~~ ~~~~ ~~~~~~~~



______ - -
~~

--
~~~~~~~~~~~: —“-- ------

20. Abstract Cont.

bound cxcept for the 2 1~ series and the trivial case where there are two factors.
- ‘—~In this paper a method of construction is given which yields resolution 1V

des i~;ns near the theoretical (perhaps unattainable) lower bound . For the 2m x
factorial , the designs exceed the lower bound by six if n > 3, by four if n = 2,
and by three if n = 1. More generally for the s~ x ~~, 

~l < s2, the des gns

exceed the lower bound by 
~~~~~~~ 

if n > 3, by s2—3s2
+2s

1 if n = 2 , and by
s
2
(s
1

— l )  if n = 1. In general the designs never exceed the lower bound by

s
k
(s
k
_l).

P

T i - 

T

p.

F r - ~~. . -  p _  
~~~~~~~~~~~~ _ _ -

~~~
-r-- -r - ~ — - -

~~~~~~~ 
j 

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ S~~_ ~~~~ 
- —


